Development of a Sonic Boom Measurement System at JAXA

Yusuke Naka
Japan Aerospace Exploration Agency (JAXA)
Agenda

• Background
• Requirements for Measurement System
• Development of Measurement System
• Flight Test
• Summary
Supersonic Transport Research at JAXA

NEXST (National Experimental SST) Tech. R&D Program

S-cube (Silent SuperSonic) Tech. R&D Program

S3TD (Silent Supersonic Technology Demonstrator)

D-SEND (Drop test for Simplified Evaluation of Non-symmetrically Distributed sonic boom)

1st Drop Test (D-SEND #1)

2nd Drop Test (D-SEND #2)

Feasibility Study

Development

Planning of New Flight Demonstration Project

Cancelled

Jet-Powered T/O and Land

Jet-Powered Air Launch

NEXST-1

NEXST-2

Non-powered Rocket Launch

Planning of New Flight Demonstration Project

Modification/Improvements

First Trial – Failure

Second Trial - Success

Technologies for Economically Viable and Environmentally Friendly

ni.com
D-SEND Program

- **Drop test for Simplified Evaluation of Non-symmetrically Distributed sonic boom**

- **Objective**
 - To validate JAXA’s aircraft design concepts for sonic boom mitigation.

- **Test Procedure**
 - Drop test models with and without “low-boom” design
 - Measure sonic booms on and above the ground
D-SEND #1 (Spring, 2011)
D-SEND #2 Test Model

- $W = 1000 \text{ kg}$
- $L \times \text{Dia.} \times \text{Span} = 7.7 \text{ m} \times 0.48 \text{ m} \times 3.5 \text{ m}$
- $\text{Span} = 3.5 \text{ m}$
- $CL = 0.12 \ (M = 1.4, \ H = 8 \text{ km})$
- $\text{Swing} = 4.92 \text{ m}^2$
- EGI (INS+GPS)
D-SEND #2 (Summer, 2013)
Measuring Sonic Booms

- Accurate measurement of sonic boom
 - Key technology for D-SEND Program

- Special requirements for measurement system
 - Unique acoustic characteristics of sonic booms
What is a Sonic Boom?

• Shock wave created from aircraft flying at a supersonic speed

• Impulsive, loud noise similar to explosion

• Supersonic flights over land currently banned due to sonic booms

• Reduction of sonic booms be necessary for next-gen. SST
Acoustic Properties of Sonic Boom

• Wide Frequency Range
 - Overall infrasonic components < 1 Hz
 - Rapid pressure rises > 10 kHz

• Wide Dynamic Range
 - Large pressure > 200 Pa (140 dB SPL)
 - Small pressure fluctuation in “post-boom noise” < 0.1 Pa (74 dB SPL)

• Transient Noise
 - Short duration < 0.3 sec
Requirements for Sonic-Boom Measurement System

- Accuracy
- Flexibility
- Reliability
- Convenience
Requirement: Accuracy

- Need to capture sonic-boom pressure time histories in detail
 - Wide range of frequency
 - 0.5 – 10,000 Hz
 - Wide dynamic range
 - 0.1 – 200 Pa
Requirement: Flexibility

• Need to use various types of transducers
 ▪ Microphones and accelerometers
 ▪ Different set-ups for different channels
 • AC- and DC-couplings
 • With and without IEPE excitation
 ▪ Ability to increase the number of channels
Requirement: Reliability

- Need to record sonic booms without fail
 - Flight test be costly
 - Long continuous recording
 - Up to 1 hr
 - Multiple channels with simultaneous sampling
 - 16 ch, 48-kHz sampling rate
 - Real-time monitoring
 - Quick review of recorded data
Requirement: Convenience

• Need to use/analyze recorded data afterward
 ▪ Post-recording data extraction and analysis
 • Only a portion of recorded data is useful
 ▪ Time stamping
 • Time alignment with data obtained with different systems set at different locations, e.g. aircraft position data.
Solution: Hardware

- NI PXI System
 - Wide variety of modules to meet requirements
 - NI 8353
 - NI PXI-1044
 - NI PXI-8360
 - NI PXI-6652
 - NI PXI-6682
 - NI PXI-4472B
Hardware Solution: Input Module

- NI PXI-4472B
 - High resolution: 24-bit ADCs
 - Wide dynamic range: 110 dB
 - Low cut-off frequency: 0.5 Hz for AC coupling
 - Software-configurable AC/DC coupling and IEPE conditioning
Hardware Solution: Timing Modules

- NI PXI-6652 & NI PXI-6682
 - Synchronize PXI systems using GPS antenna
Hardware Solution: Controller & Interface

- **NI 8353**
 - High-speed data streaming: RAID 0 configuration
 - Large-capacity storage: 4 x 250 GB HDD

- **NI PXI-PCIe8362**
 - MXI 4 High-throughput: Up to 160 MB/s
Software Solution: LabVIEW

- **Set-up**
 - Detailed set-up for each channel
 - Transducer information
- **Control Measurement**
 - Effective binary format of TDMS suitable for multi-channel, long recording
- **Real-time monitoring**
Software Solution: LabVIEW

• Quick review of recorded data
 ▪ Can check recorded data right after each flight.
 ▪ Can modify flight/measurement conditions for the next trial.

• Post-recording data analysis
 ▪ Variety of analysis functions of Sound and Vibration add-on.
Preliminary Flight Test

• Overview
 ▪ Measured sonic booms of actual supersonic aircraft (i.e. not research aircraft/model)
 ▪ September, 2009 in Sweden.

• Objectives
 ▪ To verify preliminary sonic-boom measurement system
 ▪ To identify appropriate transducers and set-ups

• Flights
 ▪ 5 flyovers
 ▪ 3 flight conditions
Flight Test: Measurement Scheme

• On the ground, measured:
 ▪ Sonic booms outdoors
 ▪ Sonic booms indoors
 ▪ Vibration of windows and walls of building

• Above the ground, measured:
 ▪ Sonic booms at altitude of 3,300 ft
Flight Test: Instruments Set-Up
Flight Test: Measured Data

![Graphs showing measurements of overpressure and acceleration over time.](image-url)
Summary

• Sonic boom measurement system has been developed at JAXA.

• The system is based on NI PXI system and LabVIEW.

• Preliminary measurement system has been validated in flight test.
Summary

• NI PXI system and LabVIEW chosen because of their:
 ▪ Accuracy
 ▪ Flexibility
 ▪ Reliability
 ▪ Convenience
 ▪ Cost effectiveness

• System developed with close relationship with NI staff
 ▪ Consulting by specialist in sound and vibration applications
 ▪ Knowledge and know-how from world-wide network
 ▪ On-site technical support in software development
Future Test Schedule

• 2nd preliminary flight test (September 2010)

• D-SEND #1 (Spring 2011)

• D-SEND #2 (Summer 2013)
Expansion Plan

• Apply NI products to aerial measurement
 - New input module in development
 • Suitable for sonic boom measurement
 ▪ 0.12 Hz cut-off for AC-coupling
 ▪ 24-bit resolution
 • Suitable for aerial measurement
 ▪ Compact and light-weight
 ▪ No external power supply needed. (USB bus-powered)
 - Low Frequency Microphone: GRAS 40 AZ-S1
 • 0.09 Hz cut-off
 • IEPE-type microphone
Tentative Expansion Plan

- Compact, stand-alone systems distributed.
- Executable LabVIEW program in each PC.
- Controlled via wireless LAN.
Stay Connected During and After NIWeek

ni.com/niweekcommunity

facebook.com/niweek

twitter.com/niweek #niweek

bitly.com/niweeklinked